

access to data to help make business
decisions.” DB2 helps with BI, but needs
additional application support for this
area and gets it from Cognos (an IBM
company), IBM DataQuant, and DB2
Alphablox.
	 Your data warehouse is how you
store the data; BI is how the data is ana-
lyzed. Both are integral parts of a com-
prehensive solution. BI applications
serve no purpose if they have nothing
to analyze and a data warehouse is of
little use without the tools to interrogate
the information it contains.
	 Finally, this article assumes that the
terms data mart, Operational Data Store
(ODS), and DSS are all similar to the
data warehouse concept and are some-
times used in conjunction with, and
sometimes in place of, the term data
warehouse.

DB2’s Effect on Your Warehouse
	 Enhancements in DB2 Version 8
support data warehousing and associat-
ed analytics. DB2 9 for z/OS could
improve your warehouse experience
even more. The latest version continues
a tradition of progress that’s worth
briefly reviewing.
	 DSS support has been improved in
some way with every release of DB2.
Here are some highlights:

•	DB2 V2.1 introduced Resource Limit
Facility (RLF), which lets you con-
trol the amount of CPU that a
resource, in this case a query, can
actually use. This is for dynamic
SQL that will probably make up
most of the warehouse SQL work-
load. This can be critical in control-
ling system resources, and RLF also
can help you control the degree of
parallelism obtained by a query.

•	DB2 V3 delivered compression, which
still has a major, immediate effect on
data warehousing. Enabling compres-
sion for tablespaces can yield a signifi-
cant disk savings. In testing, numbers
as high as 80 percent have been
observed, though your mileage will
definitely vary.

•	DB2 V3 introduced I/O parallelism.
With this first flavor, multiple I/O
could be started in parallel to satisfy a
request.

•	DB2 V4 introduced CP parallelism,
which allowed a query to run across
two or more CPs. A query could be
broken into multiple parts and each
part could run against its own Service
Request Block (SRB), performing its
own I/O.

•	DB2 V4 also introduced data sharing,
which can be an asset in a warehouse
environment. It allows access to the
operational data by the warehouse and
analytics yet still lets you separate
those applications into their own DB2,
reducing the chances of the warehouse
activity impacting operational trans-
actions.

•	DB2 V5 introduced sysplex query par-
allelism, which runs within a parallel
sysplex and requires DB2’s data shar-
ing. A query is run across multiple
CPs on multiple Central Electronic
Complexes (CECs) in the parallel sys-
plex. Although there’s some additional
CPU used for setup when DB2 first
decides to run a query in parallelism,
there’s a correlation between the
degree of parallelism achieved and the
elapsed time reduction. There also are
DSNZPARMs and bind parameters
that need to be set before parallelism
can be used.

	 With those as highlights in DB2’s
evolution, let’s review in greater detail
two key concepts, compression and par-
allelism:

Compression: DB2’s compression is
specified at the tablespace level, is based
on the Lempel-Ziv lossless compression
algorithm, uses a dictionary, and is
assisted by the System z hardware.
Compressed data also is carried through
into the buffer pools. This means com-
pression could have a positive effect on
reducing the amount of logging you do
because the compressed information is
carried into the logs. This will reduce
your active log size and the amount of

archive log space needed. Compression
also can improve your buffer pool hit
ratios. With more rows in a single page
after compression, fewer pages need to
be brought into the buffer pool to satisfy
a query’s getpage request. One of the
additional advantages of DB2’s hard-
ware compression is the hard speed. As
hardware processor speeds increase, so
does the speed of the compression built
into the hardware’s chipset.
	 When implementing a data ware-
house, the size is often considered prob-
lematic, regardless of platform. DB2’s
hardware compression can help address
that concern by reducing the amount of
disk needed to fulfill your data ware-
house storage requirements.

Parallelism: One method of reducing
the elapsed time of a long-running
query is to split that query across more
than one processor. This is what DB2’s
parallelism does. Parallelism allows a
query to run across two or more CPs. A
query is broken into multiple parts,
with each part running under its own
Service Request Block (SRB), and per-
forming its own I/O. Although there’s
some additional CPU used when DB2
first decides to take advantage of query
parallelism for its setup, there’s a close
correlation between the degree of paral-
lelism achieved and the query’s elapsed
time reduction. There also are
DSNZPARMs and bind parameters that
need to be set before parallelism can be
used.

Star Schema: There’s a specialized case
of parallelism called a star schema—a
relational database’s way of representing

44   •   z / J o u r n a l   • J u n e / J u l y 2 0 0 8

Figure 1: A Star Schema

multi-dimensional data, which is often
popular with data warehousing applica-
tions. A star schema is usually a large
fact table with lots of smaller dimension
tables (see Figure 1). For example, you
might have a fact table for sales infor-
mation. This sales table would hold
most of your data. The dimension tables
could represent products that were sold,
the stores where those products were
sold, the date the sale occurred, any
promotional data associated with the
sale, and the employee responsible for
the sale. Using star joins in DB2 requires
enabling the feature through a
DSNZPARM keyword. You also should
check a few other ZPARMs before using
star joins because they can affect a star
join’s performance.

Data Warehousing and Today ’s DB2
	 Many enhancements in DB2 V8
could directly impact a warehouse
implementation; here are the ones that
will have a positive effect on your data
warehouse and application analytics:

•	Clustering decoupled from partition-
ing

•	Indexes created as deferred are ignored

by DB2 optimizer
•	Fast cached SQL invalidation
•	Automatic space management
•	Statements IDs of cached statements

as input to EXPLAIN
•	Long-running, non-committing read-

er alerts
•	Check In (CI) size larger than 4KB
•	Multi-row INSERT/FETCH
•	REOPT(ONCE) to reduce host vari-

able’s impact on access paths
•	Index-only access for VARCHAR col-

umns
•	Backward index scan
•	Distributed Data Facility (DDF) per-

formance enhancements
•	Up to 4,096 partitions
•	Longer table and column names
•	SQL statements up to 2MB
•	Sparse index for star join
•	More tables in join
•	Common table expressions
•	Recursive SQL
•	Indexable unlike types
•	Materialized Query Table (MQT).

	 Let’s look at some of these in more
detail:

Backward index scan: Indexes are a

huge performance asset to a data ware-
house. Having the ability to read an
index backward lets you avoid building
both an ascending index and a descend-
ing index structure. Reducing the num-
ber of indexes improves the cost of
doing inserts and deletes. Every insert
or delete must update every index on
the table being changed. Backward
index scan also can reduce the cost of
doing updates if the update occurs
against a column participating in the
index. In addition, backward index scan
reduces the amount of disk storage
required to build all those indexes. With
backward index scan, you will need to
use only one index; you previously
needed two.

Multi-row FETCH and INSERT: This
enhancement lets you read or insert
multiple rows with a single SQL state-
ment via an array. This reduces the
CPU cost of running a FETCH or
INSERT. This feature is completely
usable in distributed applications pro-
cessing using Open Database
Connectivity (ODBC) with arrays and
dynamic SQL. This offers significant
performance advantages; it could

DINO-XTINCT_Mamoth_zJournal half1 1 5/11/2008 2:06:07 PM

z / J o u r n a l   •   J u n e / J u l y 2 0 0 8   •   4 5

http://www.dino-software.com

increase the performance of FETCH
processing by 50 percent and INSERT
processing by 20 percent. In fact, in
some customer testing, this feature aver-
aged 76 percent improvement for
FETCH and 20 percent improvement
for INSERT. Improving INSERT perfor-
mance and reducing INSERT CPU con-
sumption could be a significant help to
your Extract, Transform, Load (ETL)
processing.

Indexable unlike types: Mismatched
data types can now be stage 1 and
indexable. This is huge for those appli-
cations that don’t support all data types
available in DB2 for z/OS.

Sparse index in memory work files:
For star join processing, sparse indexes
can use many work files. DB2 V8 will
attempt to put these work files in mem-
ory. This can result in a significant per-
formance improvement for warehouse
queries using star joins.

More partitions (4,096) and automatic
space management: Growth is one of
those inherent qualities of a warehouse,
something you just expect to happen.
With 4,096 partitions, a warehouse
could grow to 16TB for a 4KB page size;
128TB for 32KB page. This is for just
one table. DB2 V8 also gives you auto-
matic space management, the ability to
let DB2 manage your primary and sec-
ondary space allocations. With
DSNZPARM MGEXTSZ activated, DB2
will manage the allocation of a
tablespace’s extents, ensuring that the
tablespace can grow to its maximum
size without running out of extents.

MQTs: Aggregate data can be important
for warehousing. Summary information
can be stored in an MQT and in V8,
and the optimizer can make the deci-
sion to use the MQT in place of a query
performing the summarization inline.
This can significantly improve the per-
formance of a warehouse query doing
aggregations.

	 Your data warehouse and application
analytics also will benefit from the other
V8 changes previously listed but not
detailed here.
	 DB2 9 for z/OS delivers more
changes that will directly impact your
warehouse and application analytics,
including:

•	New row internal structure for faster
VARCHAR processing

•	Fast delete of all the rows in a parti-
tion (TRUNCATE)

•	Deleting first n rows
•	Skipping uncommitted inserted/

updated qualifying rows
•	Index on expression
•	Dynamic index ANDing
•	Reduce temporary tables materializa-

tion
•	Generalizing sparse index/in-memory

data caching
•	Clustering decoupled from partition-

ing
•	Indexes created as deferred are ignored

by DB2 optimizer
•	Fast cached SQL invalidation
•	Statements IDs of cached statements

as input to EXPLAIN
•	Universal tablespaces
•	Partition-by-growth as a means to

remove non-partitioned tablespace
size limit

•	Implicit objects creation
•	Clone tables
•	MERGE statement
•	Identifying unused indexes

•	Simulating indexes in EXPLAIN
(Optimization Service Center)

•	More autonomic buffer pools tuning
for Workload Manager (WLM) syner-
gy

•	Resource Limit Facility (RLF) support
for end-user correlation

•	RANK, DENSE_RANK, and ROW_
NUMBER

•	EXCEPT, and INTERSECT
•	pureXML.

	 Let’s look at some of these in detail:

Universal tablespace: This is at the top
of my DB2 enhancements and data
warehousing lists. Consider the some-
times unpredictable but expected
growth of a warehouse and the high
possibility that many tables could be
frequently refreshed. A universal
tablespace is a cross between a parti-
tioned tablespace and a segmented
tablespace, giving you many of both of
its parents’ best features. When using a
universal tablespace, you get the size
and growth of partitioning while retain-
ing the space management, mass delete
performance, and insert performance of
a segmented tablespace. It’s kind of like
having a segmented tablespace that can
grow to 128TB of data, assuming the
right DSSIZE and right number of par-
titions are specified, and that also gives
you partition independence.

Index compression: Your first line of
defense against a warehouse perfor-
mance problem, after a well-written
query, is creating indexes, lots of index-
es. With warehousing, and for some
types of OLTP, it’s possible you could
use as much, if not more, disk space for
indexes than for the data. DB2 9 for
z/OS index compression can make a
huge difference when it comes to saving
disk space. The implementation of index
compression is nothing like data com-
pression. It doesn’t use a dictionary and
there’s no hardware assist. However, the
lack of a dictionary could be a plus.
With no dictionary, there’s no need to
run the REORG or LOAD utilities
before compressing your index data.
When compression is turned on for an
index, key and Record Identifier (RID)
compression immediately begins.

SQL: Two new SQL statements, MERGE
and TRUNCATE, can be highly effec-
tive when used with a data warehouse.
Merge, sometimes called “upsert,” lets
you change data without needing to
know if the row already exists. With

46   •   z / J o u r n a l   • J u n e / J u l y 2 0 0 8

DB2 is

more

ready for

your data

warehouse

today

than ever

before.

MERGE, if it finds an existing row, it
updates it. If it doesn’t, then it performs
an INSERT. No more doing a SELECT
first to see if the row exists or doing an
INSERT or UPDATE and checking to
see if it failed. TRUNCATE is an easy
way to remove all the rows from a table
with a single SQL statement. It’s espe-
cially handy if you’re using DELETE
triggers. Also, there’s now an APPEND
option on the CREATE/ALTER table
that tells DB2 to ignore clustering dur-
ing INSERT processing. This should
improve INSERT performance by elimi-
nating the need to figure out where the
row should go and just placing it at the
end of the table.

Clone tables: Tables can often be com-
pletely replaced on a weekly, even daily,
basis in a warehouse. Replacing a table
can cause an outage, even if that outage
seems short. Clone table support in
DB2 9 gives you an easy way to create a
replacement table while still accessing
the original table and using a command
to switch which table SQL actually
accesses. The concept is a lot like an
online LOAD REPLACE, something
unavailable in DB2.

RANK: DB2 9 gives you a little bit of
Online Analytical Processing (OLAP)
functionality with RANK, DENSE_
RANK, and ROW_NUMBER. When
used in an SQL statement, they’ll return
the ranking and row number as a scalar
value. Rank is the ordinal value of a row
in a defined set of rows. You can specify
that the result be returned with (RANK)
and without (DENSE_RANK) gaps.
ROW_NUMBER is a sequential row
number assigned a result row.

Index on expression: Sometimes, a
warehouse query requires changing a
column in the WHERE clause via a
function or possibly a calculation; some
kind of predicate that would preclude
an index access for that column or make
that predicate stage 2—affecting your
query’s performance. With index on
expression, you can build the index on
that expression, and because of the
match, get an index access. This could
be a real performance boost for some
warehouse and analytic queries.
	 There are many more new features
delivered in DB2 Version 8 and DB2 9
that could significantly enhance a ware-
house application. Though the func-
tions and features just discussed can be
especially handy for a warehouse and its
application analytics, they do benefit

anyone using DB2 for z/OS.

Data Archiving
	 Size is always a major issue for a data
warehouse. Warehouses can range in
size from a few hundred gigabytes (GB)
to dozens of terabytes (TB).
	 We’ve already discussed how DB2
can help with your data warehouse’s
growth by taking advantage of universal
tablespace’s partition-by-growth feature
in DB2 9. You also should consider the
need for timely data in your warehouse.
How current does it have to be? If you
need only the most current information
for the last six months for your analysis,
but you’d like to have the last two years
available for the occasional special pro-
cessing, don’t keep it all in the active
portion of your warehouse.
	 Consider using some form of
archiving to remove the less frequently
used data. You could use a secondary
set of archive tables that you move the
data into and have the option to include
in your queries only when necessary.
You could use something as simple as
partitioning, keeping the more current
data in the currently accessed partitions
with hope that the SQL will select only
the partitions with more current data.
Of course, you always have the option
to use a tool that does archiving for you.
You’ll want something that makes your
data available for access yet isn’t in the
physical data sets. By removing some of
the information not needed daily, you’ll
reduce the size of the warehouse. This
will make the warehouse more manage-
able and could affect performance of
queries that need to scan larger portions
of the warehouse.

Linux on System z
	 Rather than run your analytics on
Unix or Windows, consider running
them under Linux on System z running
on an Integrated Facility for Linux (IFL).
Better yet, run them on multiple Linux
systems on System z running under
z/VM on that IFL. You get the security
of running completely within your
System z box and still get to take advan-
tage of your IBM System z9 Integrated
Information Processor (zIIP) specialty
engines.
	 You can use hipersockets when
your Linux application wants to get to
DB2 for z/OS in another Logical
Partition (LPAR). Hipersockets alone
yield a performance advantage over
typical network solutions, but that dis-
c u s s i o n i s f o r a n o t h e r t i m e .
Hipersockets use TCP/IP; DB2 work

originated on Linux on System z uses a
hipersockets Distributed Relational
Database Architecture (DRDA) proto-
col and therefore uses enclaves. This
means that up to approximately 50
percent of this analytic work coming
from Linux on System z is zIIP eligible.
(zIIPs were described in detail in the
article “zIIPing Along,” which appeared
in the August/September 2006 issue of
z/Journal.)

Conclusion
	 Will DB2 for z/OS always be the best
choice for your data warehouse?
Probably not. As with all things, there’s
always a best way to do things; some-
times it’s DB2 for z/OS and sometimes
it’s DB2 LUW. There are many factors to
examine when making a warehouse
platform decision, including placement
of the data feeds and available support
expertise. The next time a platform con-
versation comes up, remember that:

•	25 of the top-25 worldwide banks are
running on DB2 for z/OS.

•	23 of the top-25 U.S. retailers are run-
ning on DB2 for z/OS.

•	Nine of the top-10 global life or health
insurance providers are running on
DB2 for z/OS.

	 Many companies seemingly know
that if your business depends on your
database, DB2 for z/OS is a good choice.
Then there’s the mainframe that DB2
runs on. The numbers there are equally
impressive:

•	95 percent of the U.S. Fortune 500
companies use System z.

•	45 percent of the U.S. Fortune 1000
companies use System z.

•	71 percent of global Fortune 500 com-
panies use System z.

	 Moreover, 80 percent of the world’s
corporate data resides on or originates
on a mainframe. If DB2 for z/OS,
combined with System z, is good
enough to handle your business, it’s
good enough to handle your data
warehouse … again! Z

About the Author
Willie Favero is an IBM senior certified IT software
specialist and the DB2 SME with IBM’s Silicon Valley Lab
Data Warehouse on System z Swat Team. He has more
than 30 years of experience working with databases
with more than 24 years working with DB2. He speaks
at major conferences, user groups, publishes articles,
and has one of the top technical blogs on the Internet.
Email: wfavero@attglobal.net

z / J o u r n a l   •   J u n e / J u l y 2 0 0 8   •   4 7

